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The hereditary ataxias are a heterogenous group of disorders with an increasing number of
causative genes being described. Due to the clinical and genetic heterogeneity seen in
these conditions, the majority of such individuals endure a diagnostic odyssey or remain
undiagnosed. Defining the molecular etiology can bring insights into the responsible
molecular pathways and eventually the identification of therapeutic targets. Here, we
describe the identification of biallelic variants in the GEMIN5 gene among seven unrelated
families with nine affected individuals presenting with spastic ataxia and cerebellar atrophy.
GEMIN5, an RNA-binding protein, has been shown to regulate transcription and
translation machinery. GEMIN5 is a component of small nuclear ribonucleoprotein
(snRNP) complexes and helps in the assembly of the spliceosome complexes. We
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found that biallelic GEMIN5 variants cause structural abnormalities in the encoded protein
and reduce expression of snRNP complex proteins in patient cells compared with
unaffected controls. Finally, knocking out endogenous Gemin5 in mice caused early
embryonic lethality, suggesting that Gemin5 expression is crucial for normal development.
Our work further expands on the phenotypic spectrum associated with GEMIN5-related
disease and implicates the role of GEMIN5 among patients with spastic ataxia, cerebellar
atrophy, and motor predominant developmental delay.
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INTRODUCTION

Hereditary ataxias are a heterogenous group of neurological
disorders affecting individuals of all age groups, and patients
present with a disturbance in movement coordination. While
cerebellar abnormalities are usually implicated, lesions elsewhere
in the neuroaxis can lead to gait abnormalities that mimic the
clinical phenotype. In addition, it is well recognized that many of
the autosomal recessive cerebellar ataxias can present as spastic
ataxias with pyramidal signs (Ruano et al., 2014). While
traditionally these were clinically distinct entities, a spectrum
of diseases ranging in clinical presentation from pure cerebellar
ataxias to spastic paraplegias have been observed more recently
(Synofzik and Schüle, 2017). The genetic causes of hereditary
cerebellar ataxias and hereditary spastic ataxias are heterogenous,
and often next-generation sequencing technologies are used to
establish a molecular diagnosis (Németh et al., 2013). To date,
more than 150 genes (OMIM categories include: 45 genes as
autosomal dominant spinocerebellar ataxias, 29 autosomal
recessive spinocerebellar ataxias, 8 spastic ataxias, and 73
spastic paraplegias) have been implicated in the ataxia
paraplegia spectrum of diseases (McKusick, 2007). The
identification of the molecular diagnosis in these patients is
the first step toward understanding the molecular mechanism
and is crucial for developing effective targeted therapeutic
strategies.

GEMIN5 is an RNA-binding protein involved in regulating
multiple aspects of transcriptional and translational processes
(Francisco-Velilla et al., 2020; Martinez-Salas et al., 2020;
Moreno-Morcillo et al., 2020). The GEMIN5 protein has 13
tryptophan–aspartic acid dipeptides (WD domains) at the
N-terminus, followed by a dimerization domain, and a
noncanonical RNA-binding site (RBS1) domain (Francisco-
Velilla et al., 2020; Martinez-Salas et al., 2020; Moreno-
Morcillo et al., 2020). GEMIN5 is predominantly a
cytoplasmic protein with sparse expression in the nucleus,
suggesting that this protein might be involved in regulating
functions in both cellular compartments. The WD domain of
GEMIN5 assists in the biogenesis of small nuclear
ribonucleoproteins (snRNPs), the building blocks of splicing
machinery, and aids in the formation of the snRNP complex
along with the other complex proteins (SMN, Gemin2-8 and
Unrip) (Lozano et al., 2018; Francisco-Velilla et al., 2020).
Moreover, the noncanonical RNA-binding sites (RBS), located
on the C-terminus, promote GEMIN5 to interact with various

mRNAs and regulate their translation. Importantly, mutations
affecting the survival motor neuron (SMN) protein have been
linked with a neuromuscular disorder, spinal muscular atrophy
(SMA), which has been linked with disruption of snRNP complex
assembly (Melki et al., 1994; Lefebvre et al., 1995; Lefebvre et al.,
1997; Burlet et al., 1998; Pellizzoni et al., 2002). The GEMIN5
protein has numerous functions as it incorporates into
cytoplasmic stress granules, binds to ribosomes, and regulates
global translation and SMN expression.

Here, we define a novel neurodevelopmental ataxia syndrome
in patients with autosomal recessive variants in the GEMIN5
gene. We provide characterization of their neurological
phenotype to include a spectrum of the cerebellar ataxia and
spastic paraplegia phenotypes among seven unrelated families
with nine affected individuals. We employ computational
biology, biochemistry, and mouse genetics to examine the
functional consequences of perturbing GEMIN5 protein
in vitro and in vivo. Our data suggest that loss-of-function of
GEMIN5 is detrimental in human patient cells and in mice.

METHODS

Patient Recruitment
GEMIN5 variants were identified in probands by whole-exome
sequencing in clinical diagnostic settings at different sites. We
found a subset of our GEMIN5 patients through GeneMatcher
(Wang et al., 2007). All patients were evaluated by a neurologist
or geneticist at their respective referral centers. We reviewed the
clinical information, neurological symptoms, examination, and
radiological studies including brain MRI and other clinical
evaluations in each patient. All patient information was
deidentified. Informed consent was obtained from patients for
publication at each site per local institution requirements by the
authors.

Genetic Studies and Variant Assessment
Whole-exome sequencing (WES) was performed at different
genetic centers using next-generation sequencing techniques,
and all variants were confirmed via Sanger sequencing with
standard methods.

Family 1: The trio was sequenced at the Yale Center for
Genome Analysis (YCGA). Genomic DNA was captured using
an IDT xGen exome kit followed by Illumina DNA sequencing.
WES data were processed using two independent pipelines at the

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 7837622

Rajan et al. GEMIN5 Mutations in Spastic Ataxia

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Yale School of Medicine and Phoenix Children’s Hospital. At
each site, sequence reads were mapped to the reference genome
(GRCh37) with BWA-MEM and further processed using GATK
Best Practice workflows, which include duplication marking,
indel realignment, and base quality recalibration. Single-
nucleotide variants and small indels were called with GATK
HaplotypeCaller and annotated using ANNOVAR, dbSNP
(v138), 1000 Genomes (August 2015), NHLBI Exome Variant
Server (EVS), and the Exome Aggregation Consortium v3
(ExAC). Rare deleterious missense variants and LOF variants
(stop-gain, stop-loss, frameshift insertions/deletions, canonical
splice site, and start-loss) were selected. MetaSVM and Combined
Annotation Dependent Deletion (CADD v1.3) algorithms were
used to predict deleteriousness of missense variants (MetaSVM-
deleterious or CADD ≥20). Family 2: The trio was analyzed at the
Genomic Sequencing Platform Seqoia (Paris) as follows:
preparation of the libraries using NEBNext® Ultra II End
repair/A-tailing module and Ligation module (New England
Biolabs®), whole-genome sequencing on a NovaSeq 6000®
(Illumina®) using 2 × 150 paired-end sequencing, high-quality
reads mapping against the human reference genome (hg38),
variant calling with GATK4 v4.1.7.0 (Broad Institute), and
annotation with SnpEff (4.3t) and SnpSift (4.3t). Family 3:
Extensive metabolic testing, microarray, spinocerebellar ataxia
panel, and Friedrich’s ataxia panel were negative. Exome revealed
GEMIN5: Chr 5 c.3046 C > T p. Arg 1016cys, c. 1452 dup p.
Met485HisfsTer27. Family 4: The exome was done as per
methodology described previously (Parolin Schnekenberg
et al., 2015). Patients were recruited, and consent for
participation in the study was obtained according to the
Declaration of Helsinki and approved by the Central Oxford
Research Ethics Committee and the Research and Development
Department of the Oxford Radcliffe Hospitals NHS Trust,
Oxford. All patients or their parents provided written consent
for the study.

Family 5: Clinical exome sequencing was performed as
described previously (Cousin et al., 2019). The proband and
his parents provided written informed consent to a study
approved by the Mayo Clinic Institutional Review Board.
Family 5 sequence reads were mapped to the reference
genome (GRCh37) with BWA-MEM and further processed
using GATK Best Practice workflows, which include
duplication marking, indel realignment, and base quality
recalibration. Single-nucleotide variants and small indels were
called with GATKHaplotypeCaller. The compound heterozygous
variants originally identified and Sanger confirmed by the clinical
laboratory for Family 5 were called with high confidence using the
workflow implemented for Family 1. Family 6: Exome sequencing
was done as per previously described protocol (Guillen Sacoto
et al., 2020; Kour et al., 2021). All the variants are annotated by
using the GEMIN5 NP_056280.2 reference transcript in
GnomAD and the other databases to estimate the allelic
frequency.

Family 7: Whole-exome sequencing (WES) was performed in
the two affected siblings, using DNA from peripheral blood
leukocytes. The exome was enriched using the SureSelectXT
V5 exome kit (Agilent, Böblingen, Germany) and sequenced

on a HiSeq2500 sequencer (Illumina, San Diego, CA,
United States). High-quality reads were mapped against the
human reference genome (hg19), and variants were called
following the Genome Analysis Tool Kit version 3.3.0 best
practice recommendations (McKenna et al., 2010; Ma et al.,
2013). After annotation with Annovar, filtration and
downstream analysis was done with FILTUS (Vigeland et al.,
2016). The identified GEMIN5 variants were validated by Sanger
sequencing.

The damaging index of GEMIN5 variants was determined by
using various in silico prediction tools, such as Polyphen2,
Provean, SNAP2, MUpro, PhD SNP, and SIFT (Cheng et al.,
2006; Ng and Henikoff, 2006; Bromberg and Rost, 2007; Mi et al.,
2010; Choi et al., 2012; Sim et al., 2012). Candidate variants were
validated by Sanger sequencing and tested for cosegregation in all
family members whenever samples were available
(Supplementary Figure S1).

All the variants were annotated by using the GEMIN5
NP_056280.2 reference transcript to estimate the allelic
frequency in GnomAD and the other databases. The effect of
GEMIN5 variants on its structure and folding was predicted by
using the molecular graphics tool PyMOL.

Immunoblotting
PBMCs were isolated from whole blood of the proband and the
unaffected parents (family 5) by following the Mayo Clinic’s
Biospecimen Accessioning and Processing (BAP) core’s
standard protocol with a target count of 10 million cells.
The isolated PBMCs were lysed in the buffer containing
150 mM NaCl, 50 mM NaF, 0.1% SDS, 1% NP40, 2 mM
EDTA, 1% sodium deoxycholate, 1 mM DTT, 0.2 mM
sodium orthovandate, and protease inhibitor (Roche) for
10 min on ice. The protein lysates were sonicated and
centrifuged at 16,000 × g for 10 min to remove the debris.
The protein concentration of each sample was determined
by using Pierce BCA protein assay kit (Thermo-Scientific). Of
the total protein, 40 µg was separated in 4%–12% NuPAGE gel
(Novex/Life technologies) and transferred to a nitrocellulose
membrane (Invitrogen). The membranes were blocked in 2.5%
milk (BLOT- QuickBlocker™ EMD Millipore) in TBST
followed by overnight incubation with primary antibody at
4°C. Membranes were washed, incubated with secondary
antibody for 1 h at room temperature, and imaged on
Odyssey® CLx (LI-COR Biosciences). The band intensities
were measured using Image Studio™ (LI-COR Biosciences).
All the primary and secondary antibodies were prepared in
2.5% blocking buffer.

The primary antibodies are as follows: Rabbit anti-GEMIN5
(1:1,000; Proteintech); Rabbit anti-GEMIN4 (1:2,000; Novas
Biologicals); Rabbit anti-GEMIN2 (1:1,000; Invitrogen), Mouse
anti-SMN (1:4,000; BD Biosciences); Mouse anti-α-tubulin (1:
8,000; Sigma T5168).

The secondary antibodies are as follows: Goat anti-mouse
Dylight 680 (1:10,000; LI-COR 925-68070); Goat anti-mouse
Dylight 800 (1:10,000; Invitrogen SA5-10176); Goat anti-rabbit
Dylight 680 (1:10,000; Invitrogen 35568); and Goat anti-rabbit
Dylight 800 (1:10,000; Invitrogen SA5-35571).
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FIGURE 1 | Biallelic variants in GEMIN5 leads to cerebellar atrophy and spastic ataxia neurodevelopmental disease. (A) Pedigrees of seven unrelated families with
nine affected individuals are shown in the top panel. Variants in GEMIN5 are shown below the affected individuals. Affected individuals are shown as filled black circles/
squires. (B) GEMIN5 protein domain structure. Type and position of the identified variants are shown along with the family numbers. (C) The frequency of clinical
presentations in our patients with autosomal recessive variants inGEMIN5. The numerator and denominator in brackets indicate the number of affected probands
and the number of probands assessed for the respective feature, respectively.
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TABLE 1 | Clinical presentations in patients with biallelic variants in GEMIN5.

Family 1 2 3 4 5 6 7

Patient number 1 2 3 4 5 6 7 8 9
Gender M M M M M M F M M
Age of onset birth (B) <1 year <1 year 14 month 14 month 1 year <1 year <1 year 25 year <1 year
Current age year (Y) Deceased (D) 18 month 5 Y 10 Y 12 Y 21 Y 21 Y 26 Y 60 57

Development
Delayed? Yes: Y, No: N Y Y Y Y Y Y Y Y Y
Regression Y/N N N N N N N N N N
Motor delay Y/N Y Y Y Y Y Y Y N Y
Speech delay Y/N/NA Y N Y Y Y Y Y Y Y
Cognitive delay Y/N/NA; NA: not

applicable
Y N Y Y Y Y Y N N

Neurological findings
Ataxia Not walking (NW) NW Y Y Y Y Y Y Y Y
Appendicular hypertonia Y/N N N Y N N N to mildly

increased
Y Y Y

Central hypotonia Y/N Y N Y Y Y Y N N N
Deep tendon reflexes

Normal (N), brisk (B), absent (A)
N N B N B B B B B

Neurological evaluation
Cerebellar atrophy (MRI)

Yes (Y)/No (N)
Y Y Y Y Y Y Y Y Y

EMG/NCV N N Mild sensorimotor
neuropathy

Clinical course
Static (S)/progressive (P) S S S S P S S S P
Genetic variant p.Tyr1282His.

p.Cys1205Tryp
p.

p.Arg1014Gln
p. Arg 1016cys p.
Met485HisfsTer27

p.Arg1016Cys/
p.Arg899ProfsTer3

p.Trp373* mat/
P.Arg1016Cys pat

p.Ala994ValP.Ala994Val p.Pro594Argp.Ser543Gly
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Knockout Mice Creation
Creation of the Gemin5 Knockout mice in the C57BL/6N
background was carried out at the MRC Harwell Institute
through the International Mouse Phenotyping Consortium
(IMPC). Using CRISPR/Cas9 and the EUCOMM/KOMP-CSD
allele structure, a premature stop codon was introduced into exon
7 of the Mus muculus Gemin5 gene, resulting in a null GEMIN5
allele. Heterozygous Gemin5 knockout mice [C57BL/6NTac-
Gemin5em1(IMPC)H/H] were confirmed via short-range PCR
at the MRC Harwell Institute.

RESULTS

Identification of Bi-Allelic GEMIN5 Variants
Here, we report nine patients with spastic ataxia and cerebellar
atrophy (Figure 1). All patients had extensive metabolic and
genetic testing, which was unrevealing before next-generation
sequencing revealed biallelic variants in the GEMIN5 gene
(Table 1). All variants were rare with allele frequencies
ranging from 0 to 4.48e−3 as a heterozygote and showed
autosomal recessive inheritance pattern (Table 3). The

TABLE 2 | Reanalysis of GEMIN5 variant (family 5).

#Chromosome POS ID REF ALT QUAL FILTER INFO FORMAT Proband
Family

5

Mother
Family

5

Father
Family

5

chr5 154305596 . C T 2350.16 PASS AC = 2; AF = 0.333; AN = 6;
BaseQRankSum = −2.172;
ClippingRankSum = 0;
DP = 273;
ExcessHet = 3.9794;
FS = 0.501; MLEAC = 2;
MLEAF = 0.333; MQ = 60;
MQRankSum = 0;
QD = 12.91;
ReadPosRankSum = 0.519;
SOR = 0.644;
VQSLOD = 6.58;
culprit = MQRankSum

GT:AD:
DP:

GQ:PL

0/1:59,42:
101:99:

1144,0,1739

0/1:36,45:
81:99:

1238,0,1006

0/0:87,0:87:
99:

0,260,2936

chr5 154278839 . G A 4229.16 PASS AC = 2; AF = 0.333; AN = 6;
BaseQRankSum = −3.74;
ClippingRankSum = 0;
DP = 433;
ExcessHet = 3.9794;
FS = 1.131; MLEAC = 2;
MLEAF = 0.333; MQ = 60;
MQRankSum = 0;
POSITIVE_TRAIN_SITE;
QD = 13.96;
ReadPosRankSum = 0.092;
SOR = 0.811;
VQSLOD = 8.22;
culprit = MQRankSum

GT:AD:
DP:

GQ:PL

0/1:73,92:
165:99:

2449,0,2046

0/0:128,0:
128:99:

0,385,4375

0/1:65,73:
138:99:

1812,0,1654

TABLE 3 | Allelic frequencies of the variants identified among our GEMIN5 patients.

Family GEMIN5 variant Prediction tool

PholyPhen-2 PROVEAN SNAP2 mu PRO SIFT

1 p. Tyr1282His Damaging Deleterious. Pathogenic −1.3449093 (DECREASE stability) AFFECT PROTEIN function
p. Cys1205Trp Damaging Neutral Pathogenic −1.6755575 (DECREASE stability AFFECT PROTEIN function

2 p. Arg1014Gln Damaging- Deleterious- Pathogenic- −0.53089832 (DECREASE stability) AFFECT PROTEIN function
c. 1600-2A>G — — — — —

3 p. Arg1016Cys Damaging Deleterious Neutral −0.96092825 (DECREASE stability) AFFECT PROTEIN function
p. Met485Hfs*27 Damaging Neutral Neutral −1.4014936 (DECREASE stability) AFFECT PROTEIN function

4 p. Arg1016Cys Damaging Deleterious Neutral −0.96092825 (DECREASE stability) AFFECT PROTEIN function
p. Arg899Pfs*3 Damaging Deleterious Pathogenic −0.59989059 (DECREASE stability) AFFECT PROTEIN function

5 p. Trp373* — — — — —

p. Arg1016Cys Damaging Deleterious Neutral −0.96092825 (DECREASE stability) AFFECT PROTEIN function
6 p. Ala994Val Damaging Deleterious Neutral −0.031927059 (DECREASE stability) AFFECT PROTEIN function
7 p. Pro594Arg Damaging Deleterious Pathogenic −0.49351856 (DECREASE stability) AFFECT PROTEIN function

p. Ser543Gly Damaging Deleterious Pathogenic −1.6477696 (DECREASE stability) AFFECT PROTEIN function
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majority of these variants, with two exceptions, (p. Arg1016Cys
and p. Pro594Arg), have not been reported in the GnomAD
database in the homozygous state (Table 3). The p. Arg1016Cys
was observed with a second allele disrupted by either a
frameshift or a nonsense variant in three patients from
three unrelated families. The p. Arg1016Cys variant is likely
to affect the dimerization domain, which might result in
downstream functional abnormality. Similarly, we found the
p. Pro594Arg allele with another missense variant in two
patients (Table 1). The variants identified were missense,
frame shift, termination, and a predicted splice site variant.
All missense variants affected conserved amino acid residues
and were predicted to be pathogenic by various computational
prediction tools (Table 4).

Patients, 8/9, presented in the first 2 years of life with concerns
for delayed motor development. No childhood motor or
cognitive regression was observed in any of the patients.
While all patients had signs of motor dysfunction, the
neurological exam ranged from hypotonia and
tremulousness to severe spastic ataxia. While central
hypotonia was observed in some patients, appendicular tone
ranged from normal to spastic. Interestingly, all patients
presented with normal to brisk reflexes. All ambulatory
patients were assessed by neurologists and were noted to be
ataxic on clinical examination. The disease progression was
variable among our patients, as some of the patients had a
static course, while others showed a possibly slow, progressive
ataxia. Magnetic resonance imaging (MRI) of the brain showed
cerebellar atrophy in all patients (Figure 2).

Stratifying patients with GEMIN5-related disease from this
study and our previously published cohort (Kour et al., 2021) by
age of onset and severity revealed three main groups based on
neurological involvement:

1. Infantile-onset severe global developmental delay with
cerebellar atrophy on neuroimaging.

These patients presented in infancy with severe hypotonia and
global developmental delay. Neuroimaging confirmed cerebellar
atrophy.

2. Late infantile-onset developmental delay and ataxia syndrome
with cerebellar atrophy on neuroimaging.

3. Juvenile/adult-onset spastic ataxia syndrome with cerebellar
atrophy on neuroimaging.

Other clinical features seen in our patients include cataracts,
strabismus, and nystagmus.

Overall, all variants of GEMIN5 appear to perturb GEMIN5
structure and function(s) and result in deleterious neurological
symptoms.

Neuroradiological Features
TheMRI images of all patients are shown in Figure 2. All patients
showed diffuse cerebellar atrophy including vermian and
hemispheric involvement of the cerebellum. Patient 5 had
minimal brainstem and spinal atrophy as well. Most patients
with repeat neuroimaging demonstrated a stable atrophy. At this
time, it remains to be clarified if the loss of cerebellar volume is
more of a hypoplasia rather than an atrophy and a natural history
study with temporal follow-up of patients and imaging will be
needed to better understand this.

GEMIN5 Variants Reduce the Levels of
snRNP Complex Proteins in Patient Cells
GEMIN5 is a multidomain protein, which acts as a crucial anchor
during the assembly of small nuclear ribonucleoproteins
(snRNPs), the essential components of the spliceosome
(Pellizzoni et al., 2002; Wan et al., 2005; Battle et al., 2006a;
Battle et al., 2006b; Kolb et al., 2007; Yong et al., 2010). We asked
if the patients carrying compound heterozygous variants of
GEMIN5 perturb the levels of GEMIN5 and other SMN
complex proteins. We isolated peripheral blood mononuclear
cells (PBMCs) from patient 5 carrying p. Trp373* and p.
Arg1016Cys variants of GEMIN5, as well as from the
unaffected heterozygous parent (father) and performed
Western blot (WB) with antibodies to GEMIN5, SMN,
GEMIN4, and GEMIN2 to assess protein levels. We found a
significant reduction in GEMIN5, SMN, GEMIN4, and GEMIN2
protein levels in the patient sample compared with the unaffected

TABLE 4 | In silico prediction of GEMIN5 variants.

Family GEMIN5 Variant (cDNA)
(NM_015465.5)

GEMIN5 Variant (protein)
(NP_056280.2)

Allele
frequency (heterozygous)

Number of homozygous

1 c.T3844C p.Tyr1282His 4.01e−6 0
c.C3615G p.Cys1205Trp 0 0

2 c.3041G>A p.Arg1014Gln 3.92e−5 0
c.1600-2A>G c.1600-2A>G 0 0

3 c.3026C>T p.Arg1016Cys 4.48e−3 5
c.1452dup p.Met485HisfsTer27 0 0

4 c.3046 C>T p.Arg1016Cys 4.48e−3 5
c.2693-2700del p.Arg899fsTer3 0 0

5 c.1119 G>A p.Tyr373ter 0 0
c.3046 C>T p.Arg1016Cys 4.48e−3 5

6 c.2981C>T p.Ala994Val 2.39e−5 0
7 c.1781 C>G p.Pro594Arg 2.40e−3 6

c.1624A>g p.Ser543Gly 2.51e−4 0
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parent (Figure 3 and Supplementary Figure S2). These findings
suggested that biallelic variants in GEMIN5 result in deleterious
changes in the levels of snRNP complex proteins, which is likely
contributing to various neurological defects observed in our
patients.

GEMIN5 Variants are Predicted to Cause
Structural and Conformational Changes
and Disrupt its Interaction With Other RNA/
Proteins
GEMIN5 is a highly conserved protein across vertebrates, and
mutations in GEMIN5 have been shown to cause a loss of
function and loss of protein stability (Kour et al., 2021)
(Table 4). Various in silico tools allow us to predict the
impact of an amino acid substitution on the structure and
function of a human protein. Using in silico tools, we found
that the GEMIN5 variants are predicted to be deleterious in
nature and lead to loss of protein function and stability
(Table 4). Amino acid substitution at key sites within a
protein due to a single-nucleotide variant (SNV) may result in
various conformation changes, including remodeling or
alteration of interaction network, salt bridges, and hydrogen
bonds. These changes may perturb protein folding kinetics
and can cause the destabilization of protein, impairing its
subsequent function or interaction with other molecules (Dill
et al., 1993; Teng et al., 2010). To determine the effect of GEMIN5
missense variants on the protein conformation and interaction
with surrounding amino acids, we used PyMOL to predict the
structural changes caused by five possibly deleterious
substitutions—three GEMIN5 variants reported in our current
study (p. Ser543Gly, p. Pro594Arg, and p. Arg1016Cys) and two
GEMIN5 variants from our previous study (p. Gly683Asp and p.
Asp704Glu) (Kour et al., 2021). All of the following variants are
located within the WD40 repeat domains (PDB ID: 5H1J), except
p. Arg1016Cys, which is located in the tetratricopeptide (TPR)-
like dimerization domain (PDB ID: 6RNS) of the GEMIN5
protein (Figure 4). By limiting the affected area of
mutagenesis to 5 Å, we measured changes in the orientation
and conformation of surrounding amino acid by calculating
their distance from the substituted GEMIN5 variant.

We found that the variant p. Ser543Gly in GEMIN5 may lead
to changes in its angular parameters and distance from Ile584,
Ser585, and Lys545, respectively, which could result in structural
changes in anaphase-promoting complex subunit 4, the WD40
domain (540–588 aa) of GEMIN5 (Figure 4A). Similarly, we
found that the conversion of Pro594, a nonpolar amino acid, to
the positively charged arginine might affect its interactions with
Glu595, Gln593, and Tyr598 (Figure 4B). Proline acts as a
structural disruptor in alpha and beta helixes, which is a
prerequisite for protein folding and structure. Therefore, its
conversion to arginine, an amino acid found at the active
centers of the protein and required for interactions with
phosphorylated substrates, might result in the disruption of
GEMIN5 structure and its interaction with other proteins.

PyMOL structure prediction suggested a possible change in
the interaction and angular distance of 704Glu variant with

FIGURE 2 | Cerebellar atrophy is a common feature among all
individuals with GEMIN5-associated disease. Magnetic resonance imaging
(MRI) of probands from families identified in the present study. Midsagittal,
coronal, and axial T2/T1 images showing evidence of cerebellar atrophy,
which was present in all patients.
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His681, His708, Asp703, Gly683, and Arg682 (Figure 4D).
Likewise, the p. Gly683Asp variant of GEMIN5, which is in a
grove between two WD40 domains, induces an ionic charge that
may result in the formation of additional bonds with Arg682 and
Phe705 as well as change in the possible conformation due to its
interaction with Arg33 (Figure 4E).

The p. Arg1016Cys variant of GEMIN5 lies in the TPR-like
dimerization domain, which modulates the interaction of
GEMIN5 with other proteins. Thus, the substitution of the
highly polar arginine, which is typically found in the interface
of the two proteins, to a small and neutrally charged cysteine,
may affect its conformation and dimerization function.
PyMOL predicted the possible changes in the distance and
bonding with Arg1014, Pro1017, and Asp1019 (Figure 4C).
Furthermore, the GEMIN5 variant p. Asp1019Cys has
been reported to disrupt the dimerization properties of
GEMIN5, suggesting the possible role and significance of
Arg1016 and Asp1019 amino acids in protein–protein
interactions. Overall, these findings suggest the possible
deleterious effect of GEMIN5 variants on its structure
conformation, interaction, and function.

Gemin5 is Essential for Development and
Knocking out Gemin5 Causes Embryonic
Lethality in Mice
To further understand the consequences of loss of function in
Gemin5 in vivo, Gemin5 knockout (GEMIN5-DEL558) mice

were created through the International Mouse Phenotyping
Consortium (Dickinson et al., 2016; Mianné et al., 2017).
To successfully generate the Gemin5 knockout mice,
CRISPR/Cas9 was utilized to delete 558 nucleotides
including exon 7 of the Mus musculus Gemin5 gene. This
deletion of 558 nucleotides resulted in a frameshift and
formation of a premature stop codon in the Gemin5 gene
(Figure 5A). Heterozygous mice were validated for harboring
one copy of Gemin5 WT and one copy of Gemin5 knockout by
SR-PCR genotyping (Figures 5B, C). Heterozygous knockout
mice were crossed together to assess the percentage of
homozygous pups. No postnatal homozygous pups were
observed at the P0 stage. Of the P0 pups, 63% were
heterozygous for the Gemin5 knockout allele, while 37% of
the pups harbored WT Gemin5 (n = 57).

To assess if pups were viable during embryonic development,
mice were genotyped at embryonic day E9.5–10.5 across five
separate litters (Figure 5D). No homozygous embryos were
observed at E9.5–10.5, suggesting that Gemin5 is crucial for
embryonic development in mice (n = 30). In addition, the
body weight of heterozygous Gemin5 knockout mice was
assessed over the course of 20 weeks. There was no significant
change in the weight of heterozygous mice compared with wild-
type control mice (n = 15 heterozygote mice, 1,013 control mice)
(Figure 5E). Since we did not get any Gemin5 null animals at
E9.5, we were unable to determine the impact of abolishing
Gemin5 on brain development. These findings suggest that the
homozygous loss of Gemin5 results in early embryonic lethality,

FIGURE 3 | Individual with compound heterozygous variants in GEMIN5 demonstrates reduced levels of SMN complex proteins. (A) Representative immunoblot
showing the protein levels of SMN, GEMIN4, and GEMIN2 in the patient carrying p.Trp373* and p.Arg1016Cys variants in GEMIN5. Protein lysates were prepared from
the PBMCs isolated from the patient and the unaffected parent (Arg1016Cys/+). (B–E) Quantitative plot showing the reduced levels of GEMIN5 (B), GEMIN4 (C), SMN
(D), and GEMIN2 (E) proteins in the patient relative to unaffected parent (father). The data represent mean ± SEM. p-Values (***<0.001, **<0.01, *<0.05) are
calculated by unpaired t test (n = 3).
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while harboring one copy of defective Gemin5 does not appear to
be detrimental and cause any obvious motor defects
(Supplementary Figure S3).

DISCUSSION

Here we expand on the neurological phenotypes observed among
patients with biallelic pathogenic variants in the GEMIN5 gene.
The clinical spectrum ranges from global developmental delay of
early infantile onset with cerebellar atrophy to adult-onset spastic
ataxia syndrome with cerebellar atrophy. Hereditary ataxias are a
genetically heterogenous group of disorders with more than 150
genes being associated with this phenotype to date. With our
cohort, we define an autosomal recessive hereditary ataxia
syndrome associated with biallelic variants in GEMIN5. All
but our early infantile patients had normal to brisk reflexes
suggesting pyramidal tract involvement. The adult patients in
our cohort were primarily followed in a spastic paraplegia clinic.

Compiling the neurological phenotype from patients we
previously reported (Kour et al., 2021) together with our
current cohort, 21 of the currently reported 39 patients
showed brisk reflexes, 4 had absent reflexes, 9 were normal,
and 5 were unknown. Central hypotonia was seen in 30 of the
39 patients, 7 had normal central tone, and 2 were unknown. Of
the 39 patients, 18 had appendicular hypertonia. Cerebellar
atrophy was characteristically seen in all patients on
neuroimaging, suggesting that this is a key feature associated
with GEMIN5 variants. We, hence, categorize the neurological
phenotype associated with autosomal recessive variants in
GEMIN5 as predominantly in the hereditary cerebellar
ataxia–spastic paraplegia spectrum of disease. While the
hereditary cerebellar ataxias and hereditary spastic paraplegias
have been thought to be clinically distinct, epidemiological
studies and recent advances in next-generation sequencing
technologies have demonstrated that multiple genes are
associated with the disease phenotypes and overlaps in clinical
presentation as well as molecular pathways.

Furthermore, this GEMIN5 neurodevelopmental ataxia
spectrum is characteristically distinct from the predominantly
neuromuscular presentation of spinal muscular atrophy (SMA)
caused by another member of the SMN protein complex. Of some
overlap, pontocerebellar hypoplasia type 1 (PCH1) is a condition
with pontocerebellar atrophy along with anterior horn cell
involvement of the spinal cord associated with many
autosomal recessive genes (Namavar et al., 2011; Wan et al.,
2012; Rudnik-Schoneborn et al., 2013; Sánchez-Albisua et al.,
2014; Lardelli et al., 2017; Ivanov et al., 2018; Nuovo et al., 2021).
These diseases can present with a varying blend of neurological
phenotypes including hypotonia to varying degrees of spasticity.

The GEMIN5 variants identified, so far, are missense, deletion,
frameshift, nonsense, and splicing defects with autosomal
recessive inheritance pattern. The variants identified in our
current study, with two exceptions (p. Arg1016Cys and p.

FIGURE 4 | In silico prediction of structural changes caused by the
GEMIN5 variants. Structural and interaction-based changes were measured
around 5A region of GEMIN5 variants Ser543Gly (A), Pro594Arg (B),
Asp704Glu (D), and Gly683Asp (E) in the WD40 domain (PDB ID: 5H1J)
and Arg1016Cys (C) in the tetratricopeptide (TPR)-like domain (PDB ID:
6RNS) by using Pymol. The affected amino acids are colored yellow and their
surrounding amino acid in light blue.
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Pro594Arg), were never reported in any publicly available
databases. The p. Arg1016Cys variant was identified with a
frameshift or nonsense variant in three patients from three
unrelated families (Table 1). This variant has been reported
with allelic frequency of 4.48e−3 (heterozygote), and there are

five individuals reported as homozygous. It is believed that the p.
Arg1016Cys variant is a hypomorphic variant, and it is not
sufficient to manifest any clinical symptoms unless the other
allele is fully disrupted. Alternatively, the homozygous
individuals in gnomAD may be at a presymptomatic stage.

FIGURE 5 | Knockout of Gemin5 leads to early embryonic lethality in mice. (A) Schematic representation of the wild-type allele of the mouseGemin5 transcript. The
Gemin5 KO mouse (GEMIN5-DEL558) was created by utilizing the EUCOMM/KOMP-CSD allele structure to delete 558 nucleotides from exon 7 of the Gemin5 gene,
encompassing a critical exon to induce a premature stop codon and a null Gemin5 allele (Mianné et al., 2017). (B) SR-PCR genotyping detects the presence of the
Gemin5 wild-type allele by short-range PCR in Gemin5 KO and control mice (copy number of 2). Samples are genotyped with a WT loss of allele (WT-LOA) assay.
This is a FAM-labeled assay that is designed to detect the critical exon that has been floxed. If the animal contains 1 Gemin5 KO allele, the copy number of this assay
should drop by 1 (copy number of 1). For autosomal genes that have been targeted, this means the following: WT = 2 copies of the LOA assay, HET = 1 copy of the LOA
assay, HOM = 0 copy of the LOA assay. (C) SR-PCR genotyping detects the presence of the cassette lacZ, the Gemin5 wild-type allele, and the Gemin5 KO allele
confirming heterozygotes by short-range PCR (copy number of 1). (D) Viability of Gemin5 KO mice at the embryonic stage of E9.5 and as first-born pups at P0.
Homozygous Gemin5 KO mice are not viable up to the embryonic stage of E9.5. (E) A body composition (DEXA lean/fat) phenotypic assay was performed on 1,028
mice. The charts show the results of measuring lean mass in 8 Het females and 7 Het male mice compared with 514 female and 499 male controls. Heterozygote mice
appear to have no change in body mass compared with controls.
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GEMIN5 is expressed predominantly in the cytoplasm as well
as in the nucleus, nucleoplasm, and gem bodies, suggesting
functions in multiple cellular compartments (Pacheco et al.,
2009; Piñeiro et al., 2015; Francisco-Velilla et al., 2016; Lozano
et al., 2018; Martinez-Salas et al., 2020; Moreno-Morcillo et al.,
2020). Animal model studies suggest that complete or partial
reduction of the snRNP complex proteins are detrimental (Saida
et al., 2021). Knocking out Smn, Gemin4, and Gemin5 is lethal in
mice and Drosophila, suggesting that these proteins are essential
for survival (Gates et al., 2004; Gavrilina et al., 2008; Meier et al.,
2018). We have previously shown that genetic reduction of
endogenous rigor mortis (fly homolog of human GEMIN5)
leads to developmental delay, motor dysfunction, and reduced
lifespan, similar to human patients with autosomal recessive
variants in GEMIN5 (Kour et al., 2021). Our data in human
patient cells (Figure 3) suggest that pathogenic variants in
GEMIN5 significantly reduce the expression of snRNP
complex assembly. Furthermore, knocking out Gemin5 in mice
is embryonically lethal (Figure 5). Although these findings are
interesting, we are unable to establish a link between cerebellar
atrophy and Gemin5 loss of function due to early embryonic
lethality in our knockout Gemin5 mice. We performed in silico
analysis to determine the impact of GEMIN5 variants on the
protein structure. We found that GEMIN5 missense variants
cause significant alterations on protein conformation, such as
remodeling the interaction network, peptide chain bending, and
the ability to interact with other amino acids. Since the GEMIN5
protein has been shown to dimerize, it is likely that frameshift and
termination variants might perturb the kinetics of protein folding
and can cause the destabilization of proteins. These alterations
might disrupt the ability of GEMIN5 to form a complex with
snRNP proteins and exert physiological functions, which in turn
lead to neurological symptoms observed in patients with
GEMIN5-related disease. We recently showed that reduction
of the levels of GEMIN5 (by mutations or shRNA
knockdown) is sufficient to disrupt the snRNP assembly in
mammalian cells and iPSC neurons (Kour et al., 2021). These
findings support the idea that each component of the snRNP
complex has an important role to play in maintaining cellular
functions. Alternatively, it is possible that loss of normal
GEMIN5 function might affect translation of mRNAs either in
a tissue-specific manner or ubiquitously leading to defective
protein synthesis and their regulatory pathways.

Given the distinct neurological presentation, we propose the
term GEMIN5-related neurodevelopmental ataxia with cerebellar
atrophy to describe the variability in clinical presentation
associated with this gene.
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